杭州领挚科技有限公司

挚盒 03MR(256x256)用户手 册

V1.0

E-mail: info@linkzill.com

Web: <u>www.linkzill.com</u>

挚盒 03MR(256x256)用户手册

产品概览

本产品主要用于阵列传感器的信号采集与成像,最大支持 256*256 分辨率的阵列读取。可提供 256 路行选 信号、4 路直流偏置信号、256 路电流读取通道。通过 USB 连接,将采集到的阵列传感器的信号传输至 PC 终端,并以 256 灰阶的图像形式在终端上显示信号强度。搭配配套的薄膜晶体管阵列芯片,可实现光、压 力等信号的检测。

项目	规格
L*W*H	258*173*48mm
净重	1400g
充电接口	DC005-2.5
数据规格	256 路脉冲电压(行选信号),电压调节范围:-15V~+15V 256 路电流读取通路,支持正电流读取,探测范围:100pA~150nA 4路直流偏置电压,电压调节范围:-15V~+15V
数据通信方式	USB 连接
数据显示载体	PC 电脑(Windows 10 以上)
电流档位	4 个电流档位 1nA/10nA/100nA/150nA
成像规格	解析度:256 行*256 列 数据灰阶:支持 256 灰阶显示
文件保存类型	用户通过自主控制数据保存的时长: .CSV 和视频格式
续航时间	常温下,连续工作大于8小时
刷新速率	PC: 5Hz on 10nA 档位,一帧图像包含 256*256 个数据

刷新速率:

电流档位	帧率(fps)	扫描一帧用时(ms)	扫描一行用时(ms)
150nA	9	111	0.43
100nA	7	142	0.55
10nA	5	200	0.78
1nA	0.5	2000	7.81

产品清单

X1
X1
X1

接口信息说明

336Pin FPC 接口引脚信息 (左→右):

引脚编号	001-006	007-008	009	010-22	023-278	279-282
定义	DUMMY	Vbias1	Vbias2	DUMMY	256 路电流读取通道	DUMMY
引脚编号	283	284	285-291	292-331	331-336	
定义	Vbias3	Vbias4	DUMMY	256 路脉冲行选信号	DUMMY	

- Vbias1、Vbias2、Vbias3、Vbias4为四路直流偏置电压输出,对应 PC 软件中的 Vbais1、Vbias2、 Vbias3、Vbias4,电压调节范围: -15V~+15V。Vbias1 必须为正值,调整时请缓慢增大电压值,如果 增加步长过大容易对器件产生损坏,Vbias1 值越大,图像对比度越大;Vbias2 必须为负值,且最好为 固定值。主要调整 Vbias1,Vbias3 与 Vbias4 维持系统原定设置值,无需更改。
- 2. 256 路脉冲行选信号, PC 软件中的 Von 对应于脉冲信号选通时对应的电压, PC 软件中的 Voff 对应于脉冲信号非选通时对应的电压, 电压调节范围: -15V~+15V。建议 Von 与 Voff 维持系统原定设置值。
- 3. 256 路电流读取通道, 仅支持正电流读取, 探测范围: 100pA~150nA。

产品使用方法

1. PC 端软件请联系厂商通过微信等传输方式发送给您。

2. 连接器件:

注:以下操作是以配套的 256*256 光阵列传感器(薄膜晶体管阵列上集成有机光传感材料)为例进行说明。 a. 在连接 TFT 器件与系统前,请确认系统设备处于未开启状态(电源开关拨至 OFF)下。 b. 翻起盖板并将器件的 FPC 接口与系统设备连接,需按压多次,确保 FPC 插紧。

c. 关闭盖板以固定 FPC。

3. 连接系统:

a.将 "MR256" 设备的电源开关拨至 "ON" 状态,打开设备的电源。

- **b.**使用 USB 线将 "MR256" 设备与电脑(PC 设备)连接。确保 USB 线的两端正确插入设备和电脑的 USB 接口。
- c.在电脑上打开 MR256 应用程序。如果连接成功,程序设备选择框会显示该 "MR256" 设备的序列号

4系统简介:

菜单栏:

Setting->Calibration:开启/关闭图像校准。

Window->Screen Exchange:界面全屏模式或窗口模式切换(全屏模式下可按"esc"退出全屏)。

- ①:显示区域,显示实时感光成像
- ②: 设置当前电流挡位
- ③: 设置当前运行电压
- ④:芯片类型选择
- ⑤: 功能区

NO Devices: 进行设备选择

Open: 开启/关闭设备

Capture: 开始/停止采集数据

Save:保存功能,点击保存按钮后选择保存选项: a. "Number"(保存帧数);b. "Save Name"(保存文件 名称);c. "Save Path"(保存文地址);d. "Data"、"Video"、"Picture":保存类型(可多选)

Matrix_keadOdt_250_interface		- u
Setting Window Help		
	Stop 💿	
	Current Range	Voltage
	150nA 100nA	Vbias1 0.5
	Save Options ×	Vbias2 -10.00 Vbias3 3.00
	Number : 30 V Save Name : 1v_wh1	Vbias4 -2.00
	Save Path : build-release/save 🖻 🕐 Data 🔍 Video 🖓 Picture ect	Von 15. 00
	Save	Setting
	NO Devices Open	ture Save
	Full-ON Full	-OFF

Full-ON: 对每一个像素点进行 255 灰阶校准,让阵列传感处于无遮挡状态后点击 "Full-ON" 按钮,记录此时电流,对应 255 灰阶信号

Full-OFF: 对每一个像素点进行 0 灰阶校准,让阵列传感处于遮挡状态后点击 "Full-ON" 按钮,记录此时电流值,对应 0 灰阶信号

⑥:采集/暂停状态指示器:灰色:停止状态,绿色:运行状态。

⑦:显示图像旋转、镜像。

5 使用流程:

a. 连接成功后点击"Open"按钮开启设备。

- **b.** 选择相应的芯片类型(GDS2 适配 Type A 模式, GDS3 和 YDS5 兼容 Type A 和 Type B 模式),并设置电 流挡位和电压。目前建议使用 Type A 模式来进行测试。
- c. 点击"Capture"按钮开始采集图像。
- **d.** 在 TFT 器件毫无遮挡的情况下,点击"Full-ON"按钮进行 255 灰阶校准,在 TFT 器件完全遮挡的情况下, 点击"Full-OFF"按钮进行 0 灰阶校准(只有在采集状态才能进行灰阶调整)。
- e.将不透光的物体放置于光阵列传感器上方,系统会实时显示物体外形,点击"Stop"按钮可暂停测试。
- f. 点击"Save"按钮, 在弹出得对话框中选择保存帧数、保存名称、保存路径、和保存类型后点击"Save"后等 待进度条完成并数据导出完毕后即可(保存需要在采集状态才可进行)。

注意事项:

▲ 请勿在充电的同时使用,以免因充电引入电磁干扰。请不要在电磁环境复杂的区域(例如:插线板 (插座)及用其供电的设备2米左右范围内)使用。测试环境、待测物、夹具需保持干燥、洁净。

🛕 充电请使用原装充电适配器,以免引起设备损毁。

🛕 正在充电时,设备充电指示灯为红色;充满时,指示灯变绿。电量从 0% 充到 100%大概需要 8 小时左

右,充满后请及时移除充电设备,以免造成设备损伤。

▲ 请勿在高温高湿环境下使用,请勿将设备投入水中或火中,以免引起设备损毁或爆炸。

▲ 请勿剧烈摇晃设备,请勿从高处跌落设备,以免引起设备损毁。